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Abstract. Ground state of the dissipative two-state system is investigated by means of the Lanczos di-
agonalization method. We adopted the Hilbert-space-reduction scheme proposed by Zhang, Jeckelmann
and White so as to reduce the overwhelming reservoir Hilbert space to being tractable in computers. Both
the implementation of the algorithm and the precision are reported in detail. We evaluate the dynamical
susceptibility (resolvent) with the continued-fraction-expansion formula. Through analysing the resolvent
over a frequency range, which is often called “interesting” frequency, we obtain the damping rate and the
oscillation frequency. Our results agree with those of a recent quantum Monte-Carlo study, which concludes
that the critical dissipation from oscillatory to over-damped behavior decreases as the tunneling amplitude

is strengthened.

PACS. 75.40.Mg Numerical simulation studies — 05.40.a Fluctuation phenomena, random processes,
and Brownian motion — 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

Effect of dissipation on quantum tunneling phenomenon
lies out of the scope of the conventional weak coupling
(Markovian) approximation, and has been studied ex-
tensively so far [1,2]. In order to introduce dissipation,
Caldeira and Leggett [3,4] involved a thermal reservoir
which consists of oscillators influencing stochastic (Brow-
nian) fluctuations to the tunneling two-level system. Their
model, the so-called spin-boson model, is given by the fol-
lowing Hamiltonian,
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where the operators {o®} denote the Pauli operators and
the operators a; and alT denote the bosonic annihilation
and creation operators, respectively, for the i-th oscillation
mode (i = 1 ~ N). The set of these oscillators works as the
above-mentioned reservoir with respect to the spin 1/20-.
The coupling coeflicients {f;} should be arranged so as to
satisfy the so-called Ohmic-dissipation condition,
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The dimensionless constant « controls the strength of the
dissipation, and the cut-off frequency w, defines the energy
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unit throughout this paper; w. = 1. The transverse field
A induces quantum coherence (tunneling amplitude) be-
tween the spin up-and-down states, whereas the coupling
to the reservoir disturbs the coherence. These conflicting
effects are the central concern of the problem, which are
apparently non-perturbative in nature.

It is noteworthy that the spin-boson model (1) is equiv-
alent to the anisotropic Kondo model [5-8]. The param-
eter o controls the strength of the longitudinal Kondo
coupling, whereas A controls the transverse-coupling
strength. Thereby, the region @ < 1 (a > 1) is identi-
fied as the the antiferromagnetic (ferromagnetic) Kondo
phase; see the ground-state phase diagram shown in Fig-
ure 1. That is, in the region o < 1, the up-and-down spin
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Fig. 1. The ground-state phase diagram of the spin-boson
model (1) with the Ohmic dissipation. Quantitative estimation
of the relaxation parameters such as the damping rate and the
oscillation frequency is the main concern of this paper.

states form a coherent (singlet) state through a certain
tunneling amplitude, whereas in > 1, the tunneling am-
plitude vanishes owing to the dissipation [9,10]. Hence, in
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the region o > 1, the ground state degenerates doubly.
The effective tunneling amplitude is found to vanish at
the phase boundary in the form [11,12],

Ao = A (é) o . (4)

We

Owing to the equivalence, we readily investigate the equi-
librium (thermodynamic) properties by means of various
theoretical techniques which have been developed so far
for the Kondo problem. Note, however, the dynamical
(non-equilibrium) properties are rather out of the scope
of these analytical techniques; refer to the paper [13] for
a recent analytical approach. The dynamical properties,
especially in the frequency range ~ Aqg, are the very con-
cern of the present topic. The noninteracting-blip approxi-
mation [2,14] was invented so as to describe the relaxation
dynamics of this particular frequency range. This approxi-
mation is, however, justified in a rather limited parameter
range o < 0.5.

Hence, in order to investigate the relaxation proper-
ties, various numerical simulations have been performed
so far. Chakravarty and Rudnick performed quantum
Monte-Carlo simulation [15]; the model they simulated
is a one-dimensional long-range Ising model, which was
derived [16,17] through eliminating the reservoir (con-
duction election) degrees of freedom. They succeeded in
obtaining the spectral function through the Padé ap-
proximation of the imaginary time correlation function
followed by the analytic continuation (Wick rotation). As
a result, they found that the long-range asymptotic form
of the dynamical correlation is governed by power law.
This conclusion was supported by Strong [18] with use of
the similar numerical technique. Vélker [19] followed the
Chakravarty-Rudnick analysis, and reported that “quasi-
particle” picture explains the spectral-function data. As
a consequence, he obtained the damping rate and fre-
quency. We utilize the picture to analyze our density-
matrix-renormalization data. Costi and Kieffer [20,21]
used the Wilson numerical renormalization technique to
calculate the spectral function. Their technique is partic-
ularly useful in order to investigate the Kondo fixed-point
(very low temperature) physics definitely. Time-evolution
simulation was performed with use of stochastic sampling
(path integral) algorithm [22]. The method has an advan-
tage over others that one can observe real-time dynamics
directly. The stochastic-sampling error, however, grows as
the evolution time is lengthened.

In the present paper, for the first time, we per-
form Lanczos-diagonalization analysis of the spin-boson
model (1). In order to command vast assembly of the
reservoir-oscillator modes, we adopted the density-matrix
truncation scheme proposed by Zhang, Jeckelmann and
White [23]. (They studied the one-dimensional polaron
system with this truncation technique.) The rest of this
paper is organized as follows. In the next section, we pro-
pose an implementation of their algorithm to the spin-
boson model (1), and report the precision in detail. In
Section 3, by means of this new technique, we investi-
gate the relaxation properties of the spin-boson model. We
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evaluate the dynamical susceptibility (resolvent), which is
readily calculated in our scheme with use of the continued-
fraction-expansion formula [24,25]. Analyzing the analyt-
icity of the resolvent, we confirm the above-mentioned
“quasi particle” picture [19] so as to obtain the damp-
ing rate and frequency. Our results are contrasted with
the former quantum Monte-Carlo results [19]. In the last
section, we give summary and discussions.

2 Application of the Hilbert-space-truncation
algorithm to the spin-boson model

In this section, we propose a prescription for adopting the
Hilbert-space-reduction method to the spin-boson model.
We then demonstrate the precision of our new scheme.

2.1 Hilbert-space-reduction algorithm

Even a single oscillator (boson) spans infinite-dimensional
Hilbert space. Therefore, in order to treat an oscillator
with the exact diagonalization method, one must trun-
cate the Hilbert space. In conventional simulations, the
boson state is represented in terms of its occupation num-
ber, and those states whose occupation number exceeds a
limit are disregarded (discarded). Zhang, Jeckelmann and
White [23] proposed an alternative representation and a
truncation criterion. Applying their scheme to a polaron
system (one-dimensional Holstein model), they demon-
strated that the scheme yields very precise results, al-
though the dimensionality of each oscillator is reduced to
three. This truncation is called “(numerical) renormaliza-
tion.” Their new method is particularly efficient in those
cases where the oscillator equilibrium position is shifted by
a certain external force (coordinate-coordinate coupling).
This is precisely the case of the present model (1).

In the following, we explain the detail how we adopt
their algorithm to the spin-boson model. First, we limit
the Hilbert-space dimensionality of each oscillator to d
dimensions except an oscillator with D dimensions; see
Figure 2. We call the d-dimensional oscillators “small os-
cillators”, and the D-dimensional one “big oscillator.” The
choice of the big oscillator is to be made in sequence among
the various reservoir oscillator modes (o« =1 ~ N). (The
sequence is continued until the set of relevant bases, ex-
plained below, becomes converged. In our experience, a
few sweeps are sufficient for the convergence.) The space
of each small oscillator is spanned by the above-mentioned
truncated relevant subspace, and thus the creation and
the annihilation operators should be represented in terms
of this subspace correspondingly. (Before renormalization,
the space is allowed to be of the number representa-
tion (jn), n = 0 ~ d — 1), and the operators are ex-
pressed in terms of this subspace.) On the other hand, the
space of the big oscillator is spanned by the occupation-
number representation with n = 0 ~ D — 1. From this
D-dimensional space, d relevant bases are renormalized
(extracted).
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Fig. 2. Schematic drawing of the density-matrix-

renormalization algorithm applied to the spin-boson model (1).

Second, we diagonalize the Hamiltonian (1) with the
Lanczos technique to obtain the ground state |¥,). Note
that the Hamiltonian consists of the operators whose ma-
trix elements are already prepared in the above. The
ground-state vector should be represented in the form,

[Wo) = Zwij|i>A|j>B7 (5)

where the set of bases {|i)4} is of the big site, and the
set of bases {|j)p} is of the remaining part of the sys-
tem. Thereby, we construct the (reduced) density matrix
subjected to the big oscillator,

piir = > hijthii;. (6)
J

The new set of bases {u®} is determined so as to diago-
nalize the density matrix,

pu? = weu. (7)

According to the proposal [26,27], the new relevant sub-
space should be spanned by the eigenvectors u® up to the
d-th largest weight (eigenvalue) wg. That is, the new an-
nihilation operator of the big oscillator is re-represented
in terms of these d relevant eigenvectors in the following
manner,

[bilss = "u’bu?. (8)

Because the renormalization is subjected to the reduced
density matrix, the renormalization is called “density ma-
trix” renormalization [26,27].

The renormalization is continued for every oscillator
modes (i = 1 ~ N) successively until the set of relevant
bases becomes fixed (converged). In our experience, a few
sweeps are sufficient for the convergence.
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Fig. 3. The transverse magnetization is plotted for the system
with N =8, A =0.3 and a = 0.5 with the dimensionality D of
each oscillator varied. The plots (+) are evaluated with the con-
ventional occupation-number representation. The occupation
number is restricted within n < nmax. Hence, D = nmax + 1.
The plots (Xx) are those evaluated with the density-matrix-
truncation algorithm. The dimensionality of each small oscil-
lator d is varied (D = d) with the big oscillator dimensionality
fixed (D = 6).

Finally, we mention how we chose the frequencies
{wa} and the coupling constants {f;}. The choice is ar-
bitrary under the constraint equation (3). We have uni-
formly distributed the oscillator frequency over the range
0 < w < we(=1), and determined the coupling constants
so as to satisfy the constraint. We numbered the oscillator
modes (&« = 1 ~ N) in order of the frequency w, (from
the slowest to the fastest).

2.2 Precision of the Hilbert-space-truncation algorithm

In this subsection, we show the precision of the algorithm
explained in the preceding subsection. In Figure 3, we
plotted the transverse magnetization (o®) for the system
N =38, A =03 and a = 0.5 by means of the conven-
tional truncation scheme; namely, the boson states are
represented in term of the occupation number, and the
occupation number is restricted within n < nmax. (Note
that the transverse magnetization indicates a degree to
what extent the tunneling is disturbed by the reservoir
fluctuations.) Hence, the dimensionality of each oscillator
is given by D = npax + 1. We observe that through in-
creasing D, the results converge to a certain limit. In the
same plot, we show the results by means of the density-
matrix-renormalization method for the same system as the
above (N =8, A =0.3 and @ = 0.5). In this renormaliza-
tion, we fixed the dimensionality of the big oscillator as
D = 6, and varied the small-oscillator dimensionality d;
hence, D = d. We see that, with fewer number of bases,
the renormalization results converge more rapidly than
the former occupation-number-representation results. As
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Fig. 4. The relative error of the transverse magnetization
with the density-matrix-renormalization method. We varied
the number of remained bases d with D = 6 fixed. The system
parameters are the same as those shown in Figure 3.

is mentioned in the previous subsection, the equilibrium
position of each oscillator is shifted by the coordinate-
coordinate coupling.

The relevant bases of the density-matrix renormaliza-
tion are constructed so as to take into account of the
fluctuations from the equilibrium position, whereas the
occupation-number basis is rather inefficient to represent
these shifted oscillator modes.

In Figure 4, we show the relative error of the trans-
verse magnetization of the density-matrix-renormalization
method (D = 6); the error is defined as the deviation from
the conventional occupation-number-truncation diagonal-
ization with D = npax + 1 = 6. The system parameters
are the same as those shown in Figure 3. We observe,
with very limited number of relevant bases (d = 2 ~ 3),
the density-matrix renormalization reproduces the full-
diagonalization result precisely. The relative error is sat-
urated to ~ 1077 due to the numerical round-off error
for d > 4. The result indicates that a few relevant os-
cillator modes are of importance. In Figure 5, we show
the weight wg of each eigenstate (i = 1 ~ D) for each
reservoir oscillator (& = 1 ~ N). The weight wg indicates
the statistical weight of the state u” contributing to the
ground state. We notice that, in fact, the first few bases
are particularly weighted, and the other states are irrel-
evant (wg < 107°), and to be ignored. Furthermore, it
should be noted that these features are common to all the
reservoir modes (i =1 ~ N).

To summarize, in Figure 3, we found that by means of
the conventional occupation-number truncation, the result
converges gradually as the occupation-number threshold
Nmax 18 increased. We see that the occupation numbers
exceeding n = 6 are hardly excited. In the density-matrix
renormalization, see Figures 4, 5, we found that only the
first few states are particularly weighted. Hence, hereafter,
we set the dimension of the big site to be D = 6, and re-
main two relevant states (d = 2) for each oscillator mode.
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Fig. 5. The weight w” (density-matrix eigenvalue) is plotted
for each oscillator mode (i = 1 ~ 8).

We believe that the number of the reservoir oscillators is
prior to the number of remained bases d for each mode:
Note that as the number of the reservoir modes is in-
creased, the coupling constants {f;} should be reduced
correspondingly; the oscillators become less disturbed. In
the following, we simulate the reservoir consisting of eigh-
teen oscillator modes. Hence, the truncation error is ex-
pected to be reduced furthermore from those shown in this
subsection.

3 Density-matrix-renormalization analysis
of the dissipative tunneling

With use of the method developed in the preceding sec-
tion, we investigate the relaxation properties in the ground
state of the spin boson model (1). These properties are ex-
tracted from the dynamical susceptibility, which is readily
evaluated in our scheme. Our results of the relaxation co-
efficients are contrasted with those obtained by means of
the quantum Monte-Carlo simulation [19].

3.1 Dynamic susceptibility —
continued-fraction-expansion formula

In this subsection, we evaluate the dynamical susceptibil-
ity, and compare ours with that obtained at an integrable
point a = 0.5. The analyticity of the susceptibility is an-
alyzed extensively in the next subsection so as to yield
relaxation properties.

Linear response theory states that the relaxation (non-
equilibrium) process should be described in term of a
certain ground-state equilibrium dynamical correlation
function, unless the process is not so far from equilib-
rium. In other words, equilibrium dynamical correlation
function does contain informations about non-equilibrium
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processes. For that purpose, we calculated the following
dynamical susceptibility,

=g [ a0

1
=1 z z
m(<a w—i—Eg—H-l—inU >

)

(10)

4 1
a <0 w—E;+H—in
= ImG(w).

Some might wonder that the inverse matrix of the total
Hamiltonian appearing in equation (9) cannot be com-
puted; this is true. The expectation value of the inverse
of the Hamiltonian is, however, evaluated with use of the
Gagliano-Balseiro continued-fraction formula [24,25],
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where the coefficients are given by the Lanczos tri-
diagonal elements,

|fix1) = H|fi) — il fi) — BE| fiza),
ai = (filH|fi)/{fil fi),
87 = (filfa)/{ficalfim1)  (Bo =0).

Therefore, through choosing the Lanczos initial vector as
|fo) = 0%|W), we readily evaluate the dynamical suscep-
tibility by means of the same numerical procedure used in
the preceding Lanczos diagonalization.

We expanded the formula (11) up to the one-
hundredth order. This is comparable with the iteration
number needed to obtain the low-lying states in the Lanc-
zos diagonalization. Therefore, the expansion is expected
to yield precise result concerning low-lying frequencies.
This frequency range is sufficient for our purpose, because
we are concerned in the frequency range ~ Aeg. More-
over, in practice, at high frequencies, the magnitude of
the spectral intensity is suppressed considerably.

In Figure 6, we plotted the spectral function,

(12)

S(w) = X (13)

w

for the parameters A = 0.2, « = 0.5 and N = 18. (The
spectral function is related closely to the linear-response
function.) At the point a@ = 0.5, the Hamiltonian (1) is
reduced to being quadratic through a canonical transfor-
mation, and the spectral intensity is calculated exactly in
the form [12],

8A2 1
S =—oim

1 w 1 w?
X (m arctan <Z> + e 1n<1 + E)) (14)
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Fig. 6. The spectral function S(w) (13) is plotted for A =
0.2 and @ = 0.5. The solid line is our density-matrix-
renormalization result for N = 18. The delta-function peaks
are broadened into the Lorentz form with the width n = 0.022.
The dashed line shows a rigorous result (14), which is available
at the Toulouse point a = 0.5.

(A = (7/4)A? Jw.). The rigorous result is plotted in Fig-
ure 6 as well. We observe that our numerical data re-
produces the rigorous formula. The slight difference may
be attributed to the spectral form (3) of the reservoir
around the cut-off frequency. We used a non-analytic
reservoir spectrum which vanishes suddenly at the cut-off
frequency. This difference may become irrelevant, if the
tunneling amplitude is set to be sufficiently small com-
pared with the cut-off frequency.

3.2 Analyticity of the dynamical susceptibility
(resolvent) and the damping properties

In this subsection, we investigate the analyticity of the
dynamical susceptibility (9), from which we extract in-
formations about relaxation properties. In Figure 7, we
plotted the imaginary-time correlation function,

B
G(iw) = —/ dr{e™o*e T g?) gelT (15)
0

— Glw) (8- o), (16)

for the system with A = 0.2, & = 0.2 and N = 18. As
is shown in the plot, the numerical result is fitted well by
the “quasi-particle” formula,

A

o) = e re

(17)
This fact was pointed out by Volker, who performed a
quantum Monte-Carlo simulation; see Introduction. As is
apparent from the definition (9), the (fitting) parameters
A and w give the damping rate and the frequency, respec-
tively, of the “coordinate” o* perturbed from the equilib-
rium position. According to the formula (17), the following
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Fig. 7. The imaginary-time Green function (15) is plotted for
N =18, A = 0.2 and a = 0.2. The solid line is our density-
matrix-renormalization result. The plots (¢) are those of the
“quasi-particle” form (17) with the damping coefficients A =
0.052 and @ = 0.124.

relations hold;

i5 (Gliw) ™!
iz (G(w) ™

w2

5o \/ 2(G(iw))~!
i (Gw) ™!

From these relations, we estimate the damping coefficients
A and @. It is one of the advantages of our scheme that
one can differentiate the function G(iw), because it is ex-
panded in the analytic form (11). in Figure 8, we plotted
the right hand side of equations (18) and (19); the system
parameters are the same as those in Figure 7. We see that
these quantities are invariant actually over a certain fre-
quency range ~ Aqg(=~ 0.13), and thus the quasi-particle
picture (17) holds in the time range ~ Af. As is ex-
plained in Introduction, we are concerned in the physics
of this particular range of time. In consequence, we ob-
tained the poles of G(w) at w = £& — i\, which are away
from the real axis. It is noteworthy that such irreversible
features are not transparent in the original high-order-
expansion result (11). Through the above data analysis,
such the relaxation features become clear; we discuss this
point afterwards.

In Figure 9, we plotted the damping rate and the fre-
quency. These damping coefficients are estimated both
with the procedure as is shown in Figure 8 and with the
conventional least square fit by the function (17). Our re-
sults of the density-matrix renormalization confirm the
former quantum Monte-Carlo study [19]: The oscillation
frequency @ is suppressed as the dissipation is strength-
ened. It vanishes around a =~ 0.5. This point indicates
the transition between the under-damped and the over-
damped oscillations. By means of the bosonization tech-
nique [8], this transition point was predicted to locate at

)\:

g

- w, (18)

— (w+ N2 (19)
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Fig. 8. The damping coefficients A (18) and @ (19) are plot-
ted; the system parameters are the same as those in Figure 7.
Around the frequency range ~ Aeg (= 0.13), these quantities
remain invariant, indicating that over this range of time, the
dynamics is described by the quasi-particle picture (17).
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Fig. 9. The damping rate A and the frequency @ estimated
by means of the density-matrix-renormalization algorithm; (a)
A=0.1, (b) A =02 and (c) A = 0.5. These are to be con-
trasted with those of quantum Monte-Carlo method [19].

a = 0.5 irrespective of the tunneling amplitude strength
A. Because in the bosonization technique, the band width
(cut-off frequency) is supposed to be sufficiently large com-
pared with the many-body interactions (A and «), the va-
lidity in the strong-coupling region is not necessarily as-
sured. In Figure 9, in fact, we see that the @ plots become
curved convexly, as the tunneling amplitude is strength-
ened, and accordingly it becomes evident that the transi-
tion point locates below a = 0.5. These features were re-
ported in the paper [19], and were suspected to be due to
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a systematic numerical error caused by the critical slowing
down. In our diagonalization calculation, we are free from
the critical slowing down. Therefore, we conclude that for
larger values of A, the transition point actually shifts be-
low o = 0.5. Furthermore, we confirm the report [19] that
at a = 1/3, the damping rate and the frequency coincide.
At this point, the peaks around w = £& of spectral in-
tensity (13) merge into a single peak so that this point
was suspected to indicate a certain phase transition. The
present result suggests that the point is merely the situa-
tion where the damping feature smears out the oscillatory
behaviour, because these relative strengths exchange.

We see that in Figure 9a (A = 0.1), the plots for a >
0.6 are rather scattered (irregular). In that region, the
quasi-particle poles shift towards the origin of the complex
plane (x& — A — 0), so that the dumping parameters
degenerate into the slowest reservoir oscillation mode. In
that situation, our method becomes inapplicable. Similar
difficulty arises in the vicinity of the localization transition
point « = 1 for larger values of A.

We are in a position to discuss the above quasi-particle
feature furthermore in detail. It is noteworthy that the
form (17) implies that the analyticity of the dynamical
susceptibility is broken along the real axis; the upper and
lower complex planes are not continued analytically. This
is precisely due to the reservoir effect, which drives the
spin state to be in equilibrium, violating the time-reversal
symmetry. In our numerical result, however, the upper
and the lower complex planes are continued analytically,
although along the real axis, there distribute vast number
of poles densely. This feature contradicts the above quasi-
particle picture insisting isolated poles at w = +w — i\
This inconsistency is simply due to the fact that our
reservoir spectrum is not continuous, and thus the time-
reversal symmetry is maintained. Only through the limit
of infinite oscillator modes, these poles merge into the
“quasi-particle” poles away from the real axis. Hence, in
order to extract relaxation properties, one should avoid
the real axis, along which the result is suffered signifi-
cantly from discontinuity of the reservoir modes. Along
the imaginary axis, as is shown in Figure 7, the result is
smooth and monotonic, and is much easier to be fitted
by the quasi-particle form. That is why we examined the
imaginary-time Green function (15) just as Volker did for
analyzing his Monte-Carlo data computed at each Mat-
subara frequency. We stress that our resolvent is eval-
uated (expanded) in the analytical (continued-fraction)
form as in equation (11). Therefore, as is shown previ-
ously in Figure 6, one can obtain the spectral function
(real-time Green function) immediately through perform-
ing the Wick rotation. This is one of the advantages of the
present scheme over others.

4 Summary and discussions

We investigated the dissipative two-state system (1)
through applying the density-matrix Hilbert-space-
truncation algorithm [23]. An implementation of this
algorithm is proposed, and the precision applied to the
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present model is reported in detail. We found that in
our situation where the oscillator equilibrium position
is shifted by the coordinate-coordinate coupling, the
density-matrix renormalization works much better than
the conventional occupation-number-truncation method.
We have remained two relevant states for each oscillator
mode, so that we succeeded in treating eighteen oscilla-
tors, keeping the truncation error considerably small. We
believe that the number of tractable oscillators is more
crucial in observing the relaxation properties than the
“quality” (fidelity) of each oscillator mode. In fact, we
reproduced the dynamical susceptibility at the Toulouse
point a = 0.5, at which a rigorous formula is known. We
stress that, in our scheme, the susceptibility is evaluated
in the analytical continued-fraction form (11), which is ap-
parently advantageous over others in performing the an-
alytic continuation (Wick rotation); in order to observe
relaxation (time irreversible) properties from numerical
data, which apparently possesses the time-reversal sym-
metry, we need to examine the analyticity of the resol-
vent (dynamical susceptibility); see Section 3.2. In fact,
after the immediate analytic continuation to the imagi-
nary axis, we found that the result is well fitted by the
form (17), confirming Vélker’s finding [19] with quantum
Monte-Carlo method. That is, the susceptibility possesses
the so-called quasi-particle poles away from the real axis
w = +w — i\. In consequence, we obtained the damping
rate A and the frequency @. Both agree with those of the
quantum Monte-Carlo method [19]. In particular, our re-
sults confirm the former report that for larger values of
A, the transition point between the over-damped and the
under-damped oscillations shifts downwards (a. < 0.5).
For studying such critical property, our method is ad-
vantageous over the Monte-Carlo method, because our
method is free from the critical slowing down.

Our program is based on the subroutine package TITPACK
ver. 2 coded by professor H. Nishimori.
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